Remanufacturing Opportunities: Successful Academic/Industry Collaborations & Projects

REMANUFACTURE

Scottish Institute for Remanufacturing

Paul Cantwell Knowledge Exchange Fellow

Our Objectives

REMANUFACTURE

- 1. Increase Innovation through stimulating and co-funding collaborative projects between industry and High Education Institutes
 - Increase productivity
 - Increase number of operations
- 2. Increase activity and engagement from the academic community to build capacity
- 3. Establish the Scottish Re-manufacturing community in Scotland

Our Approach

Build Awareness

- Remanufacturing
- Information Source
- Case-studies
- Research Portfolio

Knowledge Exchange

- Workshops
- Training
- Best Practice
- Industry needs
- Remanufacturing Portal

Scottish Institute for REMANUFACTURE

Industry Driven Projects

- Collaborative projects
- Driven by business need
- Match-funding
- 2-12 month period
- £10K £100K

Create the Network

- Academics
- Remanufacturers
- Public Sector
- Trade Associations
- External partnerships, projects

SIR: Pan-Scotland Centre of Excellence for Remanufacturing

Ellen MacArthur Foundation Model for Circular Economy

Scottish Institute for

REMANUFACTURE Flow of technical and biological materials through the 'value circle'

		PRIMARY METRIC
	Preserve and enhance natural capital by controlling finite stocks and balancing renewable resource flows	Degradation- adjusted net value add (NVA) ¹
PRINCIPLE	Optimise resource yields by circulating products, components and materials in use at the highest utility at all times in both technical and biological cycles	GDP generated per unit of net virgin finite material input ²
	Foster system effectiveness by revealing and designing out negative externalities	Total cost of externalities and opportunity cost

1 The System of Environmental-Economic Accounting, 2012 2 Adapted based on the EU's Resource Efficiency Scoreboard (Eurostat, 2014). The adaptation is to ded

The Value of Remanufacturing to the UK

Estimated Remanufacturing value to the UK = £5.5 Billion Scotland accounts for £1.1B, with 19,000 employees 14 categories of remanufacturing reviewed 9 identified as having High or Medium growth potential

Cottish Institute for REMANUFACTURE

Circular Economy Evidence Building Programme: Remanufacturing Study. Oakdene Hollins March 2015

Refurbishment of Subsea Tree

Case Study: Bonga Phase 2 Field development

Shell Nigeria Exploration & Production Company (SNEPCo) in 2013 embarked on a Tree Refurbishment initiative.

Drivers:

- Increased cost of subsea equipment due to market demand from deep water projects
- Global slump in oil prices
- Project schedule requiring subsea trees to deliver production within 14 months from field development approval

Opportunity:

- Subsea wells in Bonga field were being suspended, enabling access & retrieval of subsea trees
- Subsea trees produced to PSL 3 in API Spec. 6A, 20th edition, section J.2.3 of API 6A Annex J outlines repair & remanufacture guidelines

Refurbishment of Subsea Tree

Approach:

- Development of Discipline Controls & Assurance Framework
- 2. Development of dedicated inspection & test plan
- 3. Inspection & assessment
- 4. Functional testing
- 5. Deck Test
- 6. Spare procurement & rebuild
- 7. Progressive reviews of re-build
- 8. Deck Test for sign off

First Subsea Tree under program was installed on schedule in May 2015 on the Bonga-51 well

Impact:

- Every refurbished Subsea Tree = \$6 million saving
- Delivered in 15 month lead time
- Up to 40% cost reduction was made, by accelerating hardware availability
- Newly manufactured components would hold 36 month lead time

Scottish Institute for REMANUFACTURE

Refurbishment of Gearbox

Case Study: Elgin lean glycol pump gearbox

Drivers:

- Operational downtime not acceptable
- New product cost approximately between £140,000 to £165,000
- Lead-times of 34 week

Opportunity:

- Gearbox remanufacture found to be an acceptable practice in other sectors i.e. energy, transport, chemical plans
- Test programs establish to certify refurbished gearbox,
- Established supply chain

Impact:

- Lead-time reduced to 4 weeks from receipt of component
- Delivery with 40% cost reduction over new
- Refurbished units held as spares in inventory

Scottish Institute for REMANUFACTURE

Digital - DigiTool

- £1.2 Million IUK Project
- Over 3 Years
- Utilising a Hybrid Manufacturing Machine
 - Laser Metal Deposition (LMD) •

The Digital

Transformation of the

Tool and Die Sector

The framework is designed for easy integration with existing legacy machine tools to provide a simple and affordable solution with cross sector applicability in all re/ manufacturing applications.

Scottish Institute for REMANUFACTURE

Benefits of DigiTool

- Gain on material utilisation
- Saving on machine time
- Reduced energy consumption
- Rapid tool and die re/manufacture

Supporting the emphasis on reducing costs, improving die life and enhancing material utilisation and functional performance across the tool and die sector (forging, forming, stamping and composite

- High costs associated with die replacement
- Large proportion of UK's high value tooling is
- Overcoming supply chain, capacity and lead
- Stimulating investment and technological expertise required for adoption of new
- Enhancing competition across the industry. through uptake of innovation and new technology

Juice – Light as a Service

Business Costs:

Lighting can be 40% of electricity costs

Juice:

- Upgrade business to LED lighting
- Reducing electricity costs and environmental impact

New Circular Economy Model

- 'Pay for Lux Service'
- Installation and maintenance

Benefits:

- Customer: Eliminates issues
- Manufacture: Enables recovery and remanufacturing
- Juice: Different income stream and a new service

www.scot-reman.ac.uk 🔰 @SIRemanufacture

<u>sir-enquiries@strath.ac.uk</u>

