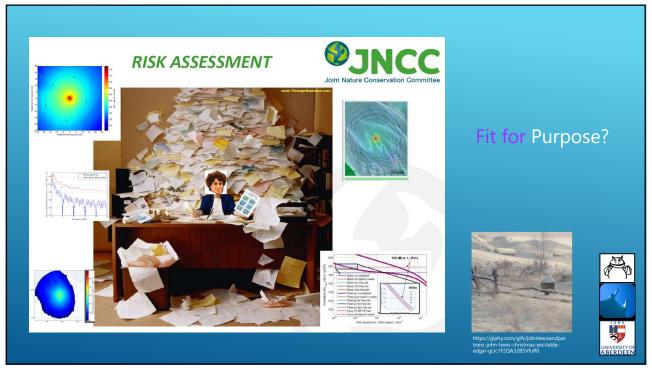
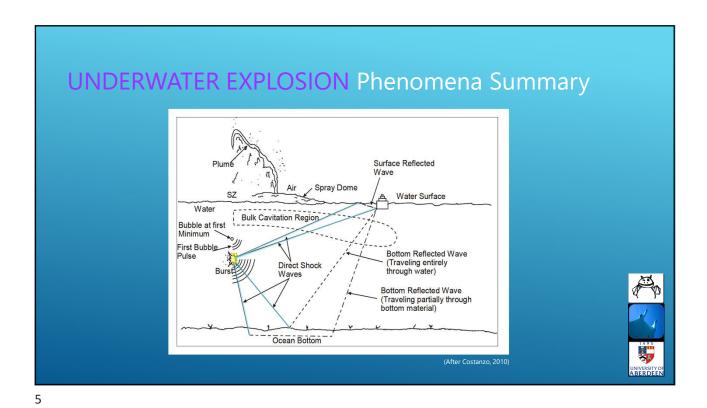


UNDERWATER NOISE Characterisation & Metrics

To characterise potential effects of sound on marine animals, regulators use:

- Sound Pressure Levels (SPLs) (acoustic amplitude)
- **Sound Exposure Levels (SEL**s) (acoustic energy: SPL + duration)
 - SEL_{ss} (single strike or shot)
 - SEL_{cum} (cumulative)

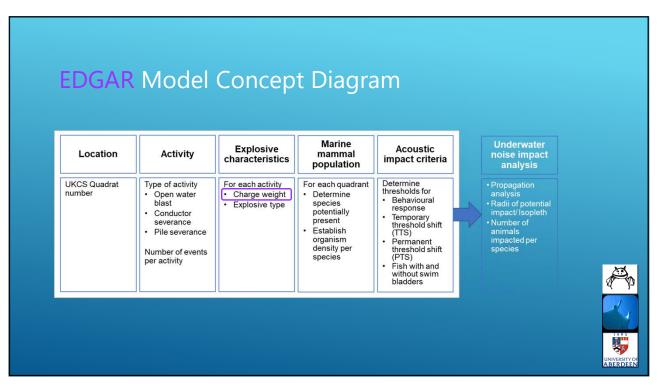

SEL_{cum} can be used to predict the **risk for hearing loss**

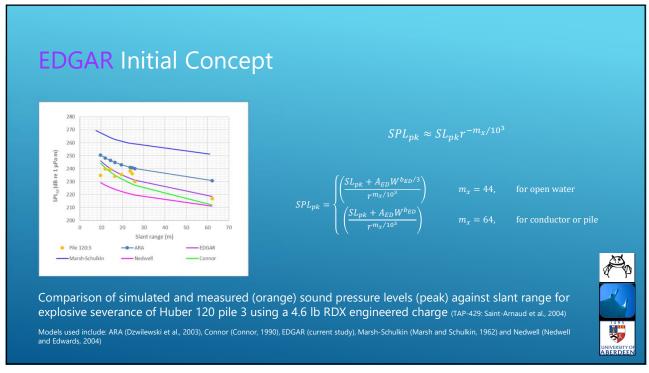

Equal Energy Hypothesis:

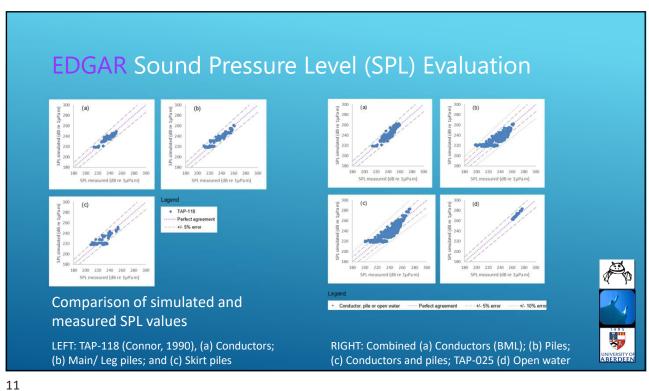
- Sounds received at lower levels for longer durations may have similar effects as sounds received at higher levels for shorter durations
- If the interval between pulses is long enough hearing can be recovered

3

UNDERWATER EXPLOSIONS Pressure Changes




11495 UNIVERSITY OF ABERDEEN



EXPLOSIVES Determination of peak pressure

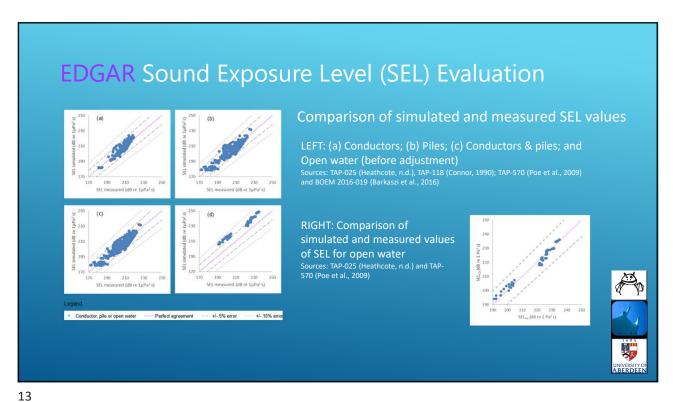
Similtude Equations (After Cole, 1948) $p = K_p \left(\frac{|V|^{1/3}}{r}\right)^{\alpha_p}$ $\theta = K_t \frac{|V|^{1/3}}{r} \left(\frac{|V|^{1/3}}{r}\right)^{\alpha_t}$ Determination of the peak pressure and the time constant P_m is the peak pressure and θ is the time constant. (After Barkaszi et al., 2016)

EDGAR SPL Statistical Evaluation

Severance type	٦	Adj R²	Lower bound (dB re 1 µPa m)	RMSE (dB re 1 µPa m)	Upper bound (dB re 1 µPa m)	RMSE (%)	Nash-Sutcliffe Efficiency index, E _f	NRMSE	Bias (dB re 1 µPa m)	Relative bias (%)	c
**Conductor	0.93	0.86	2.89	3.55	21.64	1.51	0.85	0.38	-0.55	-0.23	56
**Main/ leg pile	0.95	0.89	3.64	4.45	31.98	1.88	0.89	0.34	-0.31	-0.13	77
Skirt pile	0.78	0.60	5.82	7.25	46.94	3.14	0.56	0.66	-2.15	-0.93	65
Severance	-	Adj R²	Lower bound (dB re 1 µPa m)	RMSE (dB re 1 µPa m)	Upper bound (dB re 1 µPa m)	RMSE (%)	Nash-Sutcliffe Efficiency index, E _f	NRMSE	Bias (dB re 1 µPa m)	Relative bias (%)	u
Severance Severance (\$\text{AML})	0.90	Adj R ²	Lower bound (dB re 1 µPa m)	RMSE (dB re 1 µPa m)	Upper bound (dB re 1 µPa m)	1.79 KMSE (%)	Nash-Sutcliffe Efficiency index, E _f	NRMSE	Bias (dB re 1 µPa	Relative bias (%)	c
**Conductor											
**Conductor (BML) **Conductor	0.90	0.81	3.48	4.35	47.2	1.79	0.77	0.48	-0.17	-0.07	184

Statistical evaluation of EDGAR simulated and measured GOM values for conductor and pile severance

TOP: **TAP-118** Conductors; Main and skirt piles (air- and water- terminated, respectively).

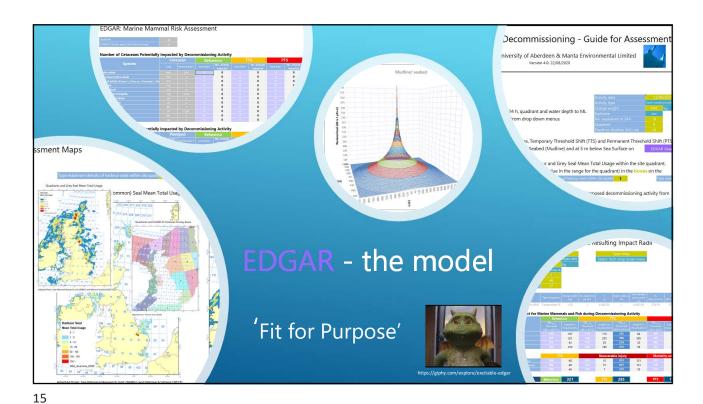

BOTTOM: **Combined** conductor, pile and conductor/ pile severance BML and **open water** blasts.

Note: Conductor (BML) refers only to conductors where the explosive charge was placed below the mudline.

TAP-025 (Heathcote, n.d.); TAP-118 (Connor, 1990); TAP-570 (Poe et al., 2009); BOEM 2016-019 (Barkaszi et al., 2016).

EDGAR SEL Statistical Evaluation

Severance type	ı	Adj R ²	Lower bound (dB re 1 µPa² s)	RMSE (dB re 1 µPa² s)	Upper bound (dB re 1 µPa² s)	RMSE (%)	Nash-Sutcliffe Efficiency index, E _f	NRMSE	Bias (dB re 1 µPa² s)	Relative bias (%)	u
Conductor (BML)	0.88	0.76	3.14	3.94	42.92	1.91	0.68	0.56	0.64	0.31	187
Conductor & Pile	0.91	0.83	3.60	4.41	78.69	2.17	0.82	0.42	-0.15	-0.07	478
Pile	0.90	0.81	1.41	5.30	24.52	2.64	0.81	0.43	-0.11	-0.05	303
Open water	0.99	0.97	12.31	12.48	110.76	5.64	-0.10	1.05	12.31	5.56	81
Open Water (adj)	0.99	0.97	1.66	2.10	14.95	0.95	0.97	0.18	0.31	0.14	81


Note: Conductor (BML) refers only to conductors where the explosive charge was placed below the mudline.

Sources: Conductors: TAP-025 (Heathcote, n.d.) and BOEM 2016-019 (Barkaszi et al., 2016). Piles: TAP-570 (Poe et al., 2009) and BOEM 2016-019 (Barkaszi et al., 2016). Open water.TAP-025 (Heathcote, n.d.) and TAP-570 (Poe et al., 2009)

Statistical evaluation of EDGAR simulated and measured GOM values for conductor and pile severance BML

Combined conductor, pile and conductor/ pile severance BML and open water blasts (before and after model adjustment applied).

EDGAR
Explosives use in Decommissioning –
Guide for Assessment of Risk

Thank you for listening

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Thank you for listening

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders:

Funded by a Knowledge Exchange Award from the University of Aberdeen
Thank you to EDGAR's Stakeholders: